If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-30x^2-6x+24=0
a = -30; b = -6; c = +24;
Δ = b2-4ac
Δ = -62-4·(-30)·24
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-54}{2*-30}=\frac{-48}{-60} =4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+54}{2*-30}=\frac{60}{-60} =-1 $
| 7y=-64 | | 2/3x-(-4/9x-9/12)=-2/8 | | x-12=254 | | x/4-6=6 | | (x+9)^2-7=0 | | 3/4b-3=-9 | | 4(x+1)^2(-64)=0 | | Y=5^2+30x-25 | | 6=4/5n | | y=5/8=1/4 | | x/1-x=1-2 | | 3x^2+5=11-2x | | b^+2b-48=0 | | 0=-1x^2+1.14x+3.5 | | 3x^2-5=11-2x | | 5w+3=33 | | 2/3(x+4)-2/5x=17/6 | | x/10+6=10 | | 4(2a+3)=12 | | 0=16t^2+96t | | 5u/9=35 | | 9x-15^4=x | | 10n+2=62 | | 4(x+1)^2=64 | | 11=8q=3q-19 | | 10y+3=53 | | 7.7j=7623 | | 1/2=x12 | | x+40=40 | | 8(3x+3x+2)=-4x+124 | | 1/7=8/x | | 5+x/10=12 |